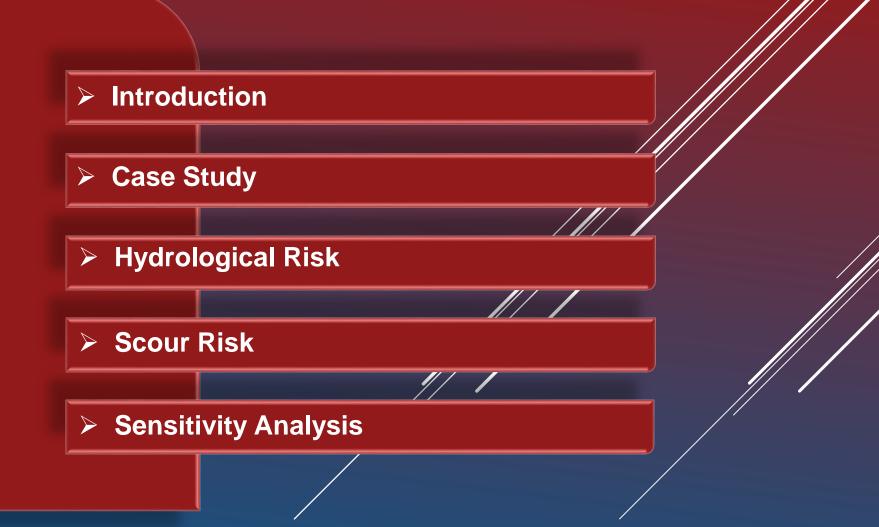
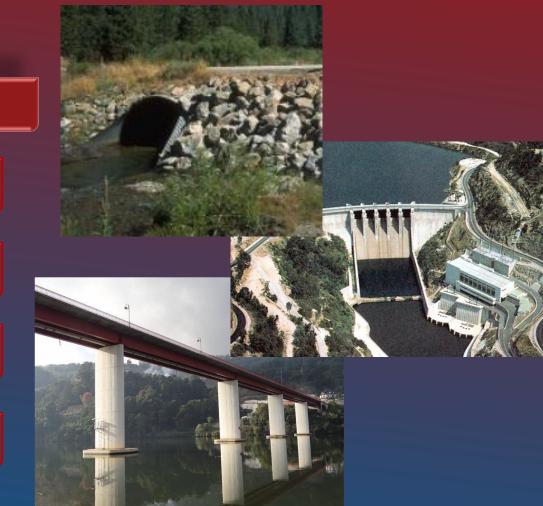
V Congresso Internacional de Riscos

"Contributos da ciência para a redução do risco. Agir hoje para proteger o amanhã" Coimbra, 12 a 16 de outubro de 2020


HYDROLOGICAL RISK AND ASSOCIATED SCOUR RISK - CASE STUDY SENSITIVITY ANALYSIS -

Ana Margarida Bento, Andreia Gomes, Lúcia Couto, João Pedro Pêgo & Teresa Viseu

PRESENTATION OUTLINE



Introduction Case Study

Hydrological Risk

Scour Risk

Sensitivity Analysis

Hydraulic Infrastructures Collapses Causes

Consequences

Levels of Risk

	Hydraulic Causes	Consequences
Introduction	 Floods; Scour; 	 Socio-economic disruption; Human fatalities;
Case Study	 Hurricane; Ship collision. 	Increased greenhouse gas emissions resulting from detours and delays.
Hydrological Risk	Levels of Risk	
Scour Risk Sensitivity Analysis	 From acceptable to unaccepta Depends on the bridge's typ and dimensions as well as on of its possible collapse, in material damage and loss of h 	oology, importance the consequences ncluding possible

Introduction

Case Study

Hydrological Risk

Scour Risk

Sensitivity Analysis

- Collapse of the Entre-os-Rios bridge, over Douro river, Portugal;
- Cause: Persistence of floods exceeding 8.000 m³/s - scouring around its foundation.
- Consequences: Loss of 59 human lives; Traffic disruption; Construction of a new crossing.
- New Hintze Ribeiro bridge (May, 2002).
- Built 7.5 m upstream of the old bridge's position.
- The new bridge foundations have a pilesupported piers geometry.

Introduction	Hydrological risk is defin event (i.e.: floods) at lea years.		-		-	
Case Study	Return Period (T)					
	Hydr	ologica	l Risk	(R _H)	$\rightarrow R_H$	$= P(x \ge x_T) = 1 - \left(1 - \frac{1}{2}\right)$
Hydrological Risk						
	Design Life (n)	- (24)	Expected	design life,	n (years)	
Coorum Diale		R _H (%)	50	100	200	
Scour Risk		50	73	145	289	
		40	98	196	392	
		30	141	281	561	
Sensitivity Analysis		25	174	348	696	
		20	225	449	897	
		15	308	616	1231	
		10	475	950	1899	
V Congresso Internacional de Riscos		5	975	1950	3900	

п

 \overline{T}

Scour risk rating

(Highways Agency, 2012¹)

Introduction

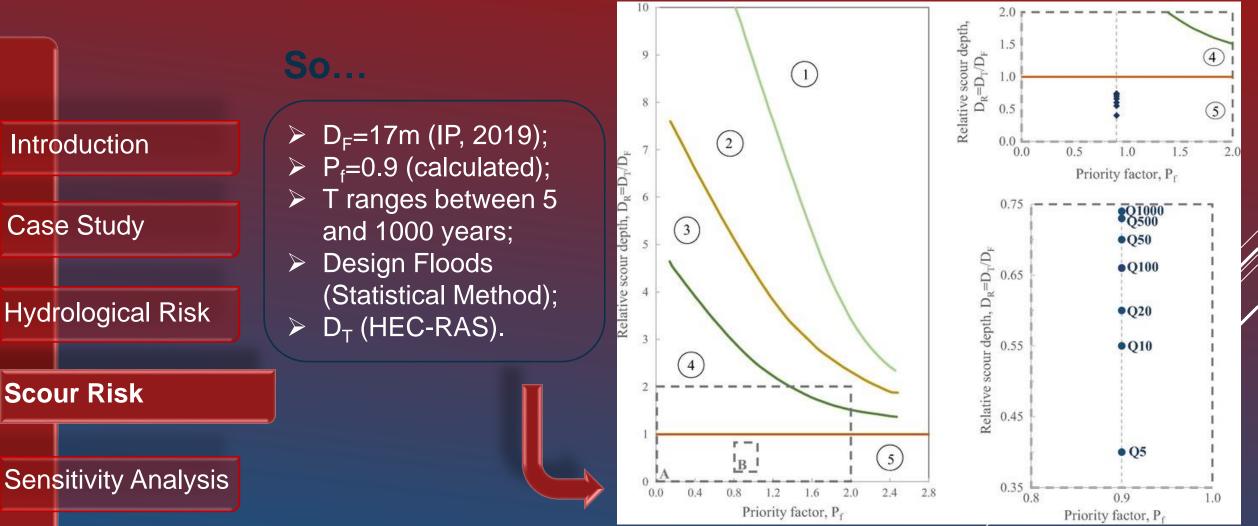
Case Study

Hydrological Risk

Scour Risk

Sensitivity Analysis

Relative Scour (D_R) $D_R = D_T / D_F$


- D_T Total depth of scour, calculated for each design flood and associated return period;
- \succ D_F Foundation depth.

Priority factor (P_f) P_f=FHMT_RV

- ➤ F Foundation type factor;
- H -History of scour problem factor,
- M Foundation material factor;
- T_R Type of river factor;
- > V Importance factor.

V Congresso Internacional de Riscos Coimbra, 12 a 16 de outubro de 2020

¹Highways Agency. (2012). The assessment of scour and other hydraulic actions at highway structures. Design manual for roads and bridges, 3.

Bento, A.M., Gomes, A., Viseu T., Couto, L. \& Pêgo, J.P. (2020) Risk-based methodology for scour analysis at bridge foundations. Engineering Structures. 223:111115. doi: 0.1016/j.engstruct.2020.111115 Hydrological Risk (R_H) 🔶 Scour Risk (R_S)

Introduction

Case	Study
------	-------

Hydrological Risk

Scour Risk

Assuming n = 50 years

T (years)	R _H	R _S
2	100%	5
5	100%	5
10	99%	5
20	92%	5
50	64%	5
100	39%	5
500	10%	5
1000	5%	5

- A 100-year return period corresponds to a hydrological risk of 40%;
- A hydrological risk of 10% corresponds to a 500-year design flood;
- The level of risk does not depend on design life (n);
- $\clubsuit \ R_{H} \downarrow \text{ Design Floods} \uparrow R_{S} \uparrow$

Sensitivity Analysis

While Q500 is associated with a lower hydrological risk, the water level regarding that design flood reaches the bridge deck, which adds other sources of instability in addition to the inherent scour risk.

V Congresso Internacional de Riscos Coimbra, 12 a 16 de outubro de 2020

THANK YOU FOR YOUR ATTENTION

The research work is supported by the Portuguese Foundation for Science and Technology (FCT), through the PhD scholarship PD/BD/127798/2016, in the framework of the Doctoral Program -Analysis and Mitigation of Risks in Infrastructures - INFRARISK.